

Year 12 Chemistry

Acids and Bases Test 2019

Time allowed:

45 minutes

Name:_____

DGM

Mark =/45

Teacher:

CEM

JJF

JPT

Section 1 Multiple Choice

10 marks

1. Consider the following Brønsted- Lowry equation:

 $HS^{-}(aq) + CO_{3}^{2-}(aq) = S^{2-}(aq) + HCO_{3}^{-}(aq)$

Which of the following is **not** true of this equation?

- A. HCO_3^- is acting as an acid.
- B. CO_3^{2-} is acting as a base.
- C. HS^{-} is acting as a base.
- D. CO_3^{2-} accepts a proton from HS⁻
- 2. What is the conjugate base of $[AI(H_2O)_6]^{3+}$?
 - A. [Al(HO)₆]²⁺
 - B. [AI(H₂O)₅(OH)]⁴⁺
 - C. $[AI(H_2O)_5(OH)]^{2+}$
 - D. [AI(OH)₆]³⁺
- 3. Which of the following combinations of substances would <u>not</u> result in a visible reaction?
 - A. Hydrochloric acid and sodium carbonate solution
 - B. Sulfuric acid and barium hydroxide solution
 - C. Ethanoic acid and magnesium
 - D. Nitric acid and potassium hydroxide solution
- 4. Which of these solutions would be the most effective buffer solution?
 - A. 100 mL of 1.0 molL⁻¹ NaOH (aq) mixed with 100 mL of 1.0 molL⁻¹ CH₃COOH (aq)
 - B. 100 mL of 1.0 molL⁻¹ HCl (aq) mixed with 50 mL of 1.0 molL⁻¹ NaCH₃COO (aq)
 - C. 100 mL of 1.0 molL⁻¹ NaOH (aq) mixed with 200 mL of 1.0 molL⁻¹ CH₃COOH (aq)
 - D. 50 mL of 1.0 molL⁻¹ NaOH (aq) mixed with 100 mL of 1.0 molL⁻¹ NaCH₃COO (aq)

- 5. Which of the following best describes the change taking place when ethanoic acid reacts with potassium hydroxide solution?
 - A. KOH (aq) + CH₃COOH (aq) \rightarrow H₂O (ℓ) + KCH₃COO (aq)
 - B. $OH^{-}(aq) + CH_{3}COOH(aq) \rightarrow H_{2}O(\ell) + CH_{3}COO^{-}(aq)$
 - C. $OH^{-}(aq) + H_{3}O^{+}(aq) \rightarrow 2H_{2}O(\ell)$
 - D. $K^+(aq) + CH_3COO^-(aq) \rightarrow KCH_3COO (aq)$
- 6. Which of the following statements is true about equal volumes of hydrochloric acid and ethanoic acid of the same concentration?
 - A. Each contains the same number of H_3O^+ ions in solution.
 - B. When added to magnesium metal, each will produce hydrogen gas at the same rate.
 - C. Each will require the same amount of sodium hydroxide in order to react completely.
 - D. When each is reacted to completion with sodium hydroxide, the pH of the resulting solutions are the same.
- 7. Which of the following solutions has a pH less than 7?
 - A. 0.001 molL⁻¹ potassium carbonate
 - B. 0.001 molL⁻¹ magnesium nitrate
 - C. 0.001 molL⁻¹ sodium hydrogensulfate
 - D. 0.001 molL⁻¹ sodium ethanoate (acetate)
- 8. When carbonic acid is added to water, it ionises according to the following series of reactions:

$$H_2CO_3 (aq) + H_2O (\ell) \rightleftharpoons H_3O^+ (aq) + HCO_3^- (aq)$$
 $K_1 = 2.5 \times 10^{-4}$

 $HCO_3^-(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + CO_3^{2-}(aq)$ $K_2 = 4.7 \times 10^{-11}$

Which of the following lists correctly ranks the species present in order of decreasing abundance.

- A. CO_3^{2-} (aq), HCO_3^{-} (aq), H_3O^+ (aq), H_2CO_3 (aq)
- B. H_3O^+ (aq), HCO_3^- (aq), H_2CO_3 (aq), CO_3^{2-} (aq)
- $C. \qquad H_{3}O^{+}\,(aq), \ H_{2}CO_{3}\,(aq), CO_{3}{}^{2^{-}}\,(aq), \ HCO_{3}{}^{-}\,(aq)$
- D. H_2CO_3 (aq), H_3O^+ (aq), HCO_3^- (aq), CO_3^{2-} (aq)

9. Several drops of concentrated NaOH are added to the following buffer system, containing equimolar amounts of $H_2PO_4^-$ and HPO_4^{2-} ions.

 $H_2PO_4^{-}(aq) + H_2O(\ell) = H_3O^{+}(aq) + HPO_4^{2-}(aq)$

Which of the followings statements about the effect of adding NaOH is true?

- A. The concentration of H_3O^+ increases
- B. The concentration of OH⁻ decreases
- C. The concentration of $H_2PO_4^-$ increases
- D. The concentration of HPO₄²⁻ increases
- 10. Which of the following correctly assigns pH values to the four 0.01 molL⁻¹ solutions listed in the table below.

	H_2SO_4	NH₄Cℓ	NaNO ₃
Α.	1.6	5.6	9
В.	1.6	5.6	7
C.	1.9	7	9
D.	1.9	5.6	7

Sec	tion 2	Short answer	34 marks	
11.	a)	Identify the acid/base co	njugate pairs in the following Brønsted- Lowry equation.	
		NH₃ (aq) + C	$H_3CH_2NH_2$ (aq) $\Rightarrow NH_2^-$ (aq) + CH_3CH_2NH_3^+ (aq)	
	Pair 1:	Acid	Conjugate Base	
	Pair 2:	Acid	Conjugate Base	
	b)	Given the K _c value of the present in the reaction.	reaction in part a) is greater than 1, identify the strongest base	
	Strong	est base:		
			(3 marks)	
12.	Write a and pc	Write an equation and an observation to describe the reaction between solid ammonium nitrate and potassium hydroxide solution.		
	Equation	on:		
	Observ	vations:		

(4 marks)

- 13. Determine the pH of the following:
 - a) The solution formed when 12.3 g of barium hydroxide is dissolved in 200 mL of water.

(4 marks) b) The solution formed when 0.54 g of magnesium is added to 50.0 mL of a 1.04 molL⁻¹ nitric acid solution. Note the reaction proceeds according to the following equation. You may also assume that there is no change in volume during the reaction. $Mg(s) + 2H^{+}(aq) \rightarrow H_{2}(g) + Mg^{2+}(aq)$

(6 marks)

14. Information about several weak acids and their Ka values are listed in the table below:

Acid	Ka value (25°)	
Methanoic acid (CHOOH)	1.8 x 10 ⁻⁴	
Hydrocyanic acid (HCN)	6.2 x 10 ⁻¹⁰	
Hypochlorous acid (HC ℓ O)	3.5 x 10⁻ ⁸	
Oxalic acid (H ₂ C ₂ O ₄)	5.8 x 10 ⁻²	

a) Write an ionic equation to show the ionisation of hydrocyanic acid in water. Include state symbols.

(2 marks)

b) Complete the following table, indicating whether the following statements are true or false.

Statement	True/False
Methanoic acid is a stronger acid than oxalic acid	
0.1 molL ⁻¹ NaC ℓ O (aq) has a higher pH than 0.1 molL ⁻¹ KCN (aq)	
In a hypochlorous acid solution, $[HC\ell O] > [C\ell O^{-}]$	
The conjugate base of oxalic acid $(H_2C_2O_4)$ is $C_2O_4^{2-2}$	

(4 marks)

c) Explain why a solution of potassium methanoate (KCHOO) is basic. Use equations to illustrate your answer.

(3 marks)

15. Benzoic acid, drawn below, is a monoprotic weak acid.

Benzoic acid (C₆H₅COOH)

A buffer was produced by mixing 100 mL of 0.5 molL⁻¹ benzoic acid with 100 mL of 0.5 molL⁻¹ sodium benzoate (NaC₆H₅COO) solution.

a) Write an equation to show the equilibrium system that is established in this buffer solution.

(1 mark)

b) When a single drop of concentrated sodium hydroxide is added to the benzoic acid buffer solution, the pH increases only minimally. Account for this observation, using an equation(s) to illustrate your answer. Note, a detailed collision theory response is not required.

(3 marks)

c) When the same drop of concentrated sodium hydroxide is added to water, the pH increases significantly. Account for this observation.

(2 marks)

16. The acidification of the world's oceans as a result of increased atmospheric carbon is causing damage to marine ecosystems.

When CO_2 (g) dissolves in water, it produces carbonic acid (H₂CO₃), which then ionises in water to produce H₃O⁺ ions, decreasing the pH of the water as shown below.

 $H_2CO_3(aq) + H_2O(\ell) \rightleftharpoons HCO_3(aq) + H_3O(aq)$

One major concern due to the increased acidity of the oceans its effect on calcification, the process by which marine organisms build their shells using carbonate ions.

Calcification: $Ca^{2+}(aq) + CO_3^{2-}(aq) \rightleftharpoons CaCO_3(s)$

Carbonate ions can also react with hydronium ions present in the ocean.

 $H_{3}O^{+}(aq) + CO_{3}^{2-}(aq) \rightleftharpoons HCO_{3}^{-}(aq) + H_{2}O(\ell)$

a) Hence, or otherwise, complete the following table, describing the effects on the concentration or mass of various species in the oceans due to the increased levels of atmospheric CO₂.

Species	Effect (increase/decrease/no change)
[HCO₃ ⁻]	
[CO ₃ ⁻²]	
Mass of CaCO ₃	

(3 marks)

End of test